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Approximate Approach to the Design

of Shielded Dielectric Disk Resonators

with Whispering-Gallery Modes
Eugene N. Ivanov, David G. Blair, and Victor I. Kalinichev

Abstract— An analytical method is presented for calculating
the resonant frequency and the Q-factor of shielded dielectric
disk resonators excited in whispering-gallery modes. The method
is based on a single-mode representation of electromagnetic fields
in partia~ regions of the resonator. For high order modes with
high degree of energy concentration in the dielectric this method
gives a good agreement with experimental results obtained for
different sapphire disks at both room temperature and cryogenic
temperatures.

I. INTRODUCTION

PROPERTIES OF the electromagnetic whispering-gallery

modes (Wg-modes) in a dielectric disk fabricated from a

very high purity sapphire crystal mounted inside a cylindrical

superconducting cavity has been experimentally investigated

by Blair [1]. Extremely high values of the Q-factor are

achievable at these modes (up to 4.3 x 109 at T = 2.2

K). The low sensitivity of such resonators to environmental

perturbations, along with the presence of turning points in the

temperature dependence of resonant frequency [2], [3] allows

one to create a very high performance microwave frequency

standard with fractional frequency stability less than 10– 14 for

integration time between 3-300 sec [4].

The design of such resonators requires the accurate com-

putation of the resonant frequency and the Q-factor of the

operating mode. Although there are a number of rigorous

and approximate approaches to analysis of Shielded Dielectric

Disk Resonators (SDR), these are generally devoted to low-

order modes in miniature ceramic resonators of very high

pertnittivity E >30 [5]. The method described here is an exten-

sion of an approximate one which has been used previously for

analysis of high-order modes in open sapphire disk resonators

[6]. It belongs to the group of mode matching methods and

is a simplified version of the Partial Region Method (PRM)

[7], According to this method electromagnetic fields in the

each partial region of the cavity are expressed in terms of

single eigenmodes with unknown amplitude coefficients. The

coefficients are found by the process of matching tangential

components of the H and E fields on the boundary between
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adjacent regions. This matching also results in a system of

characteristic equations which allows the resonant frequency

to be defined.

As for the fundamental Wg-modes in the open sapphire

cavity the accuracy of the frequency calculation using this

method improves with the growth of azimuth number m and

can be about 0.1 % for m > 6–8 [6]. This is because most of

the electromagnetic energy of Wg-mode is confined to a small

region near the circumference of the disk and one can neglect

the scattered fields near the disk edges. For low-order Wg-

modes (m < 6) in comparatively “thin” disks, this assumption

is not exactly true and more rigorous modifications of the PRM

must be used.

In this paper we first consider a simple 2 dimensional

model for SDR’S, which is useful for understanding their

general properties. In Section III we describe the generalized

3 dimensional model. Results of computation and comparison

with experiment are presented in Section IV, while in Section

V we discuss the limits of our mathematical model.

II. PROPERTIESOF Wg-Motm IN INFINITE SDR

A schematic drawing of the SDR is shown in Fig. 1. To

qualitatively explain some basic properties of the SDR it is

enough to consider a two-dimensional model consisting of

an infinite dielectric rod placed coaxially inside a cylindrical

metal shield. Such a model allows one to study the influence of

shield on the Q-factor of Wg-modes, and to understand why

the total sizes of the SDR can be much smaller than those of

an open unshielded resonator.

The general solution of this problem for waves traveling

along the ~-direction has been obtained in [8]. We use

some of these results to study in detail one of the most

important situations: a sapphire rod inside a copper shield.

Calculations have been accomplished for two mode families

existing independently in the SDR under such conditions:

for E-modes characterized by E., Hp, Hv -components and

for H-modes with Hz, Ep, EW-components. The frequency

dependence of the sapphire loss tangent and the surface

resistivity of copper at room temperature are assumed to

be described by the following empirical equations: tan 6 =

5 x 10-7j, where f is a frequency in GHz, and R, =

4.45 x 10-3 ~~ where f is a frequency in Hz and VC

is the velocity of the light in vacuum in m/see. The radius of

the sapphire rod b is assumed to be kept constant whereas the
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Fig. 1. Schematic drawing of the shielded dielectric disk resonator.

shield radius c is varied from c = b to c = 5b. The value b

chosen, 17.2 mm, is a typical value for X-band cavities.

Results of calculations for fundamental E- and II -modes

with one node along the radius and m nodes in the azimuthal

direction are shown in Fig. 2(a) and (b), respectively. The

mechanism of the maximums in Fig. 2(a) and (b) is related to

non-monotonic dependence of the power losses in the metal

shield at variations of its radius. The maximum value of Q

for E-modes is achieved at smaller azimuth number (m = 4)

than for H-modes (m = 6). This property which holds also

for three dimensional SDR can be used to substantially reduce

the size and cost of dielectric disk resonators. For instance,

at ~ = 10 GHz the radius of the dielectric rod is equal to

8.8 mm for E4,1 -mode and 15.1 mm for ~G,l -mode. In both

cases the Q-factor is dominated by only the intrinsic losses in

sapphire (Q = 2 x 105) provided the shield radius is chosen
to be equal to 23–25 mm.

Such Q-factors are unachievable in open resonant systems,

(such as a solid dielectric rods or disks in free space) if low

azimuth numbers (m = 4-6) because large radiation losses.

Thus the Q-factor of Ea,l-mode in an open resonator does

not exceed 103 [9]. To make the radiation losses negligible

compared with the power dissipated in the dielectric it is

necessary to increase the azimuth number and simultaneously

the radius of the rod in order to keep the resonant frequency

constant. From our previous work [9] one can calculate that

radiation losses cease to restrict the Q-factor of the E-modes

for m > 9. In this case the sapphire rod radius must be 17

mm to allow a 10 GHz resonant frequency.

Therefore, at least two main advantages of SDR become

evident from the two-dimensional model: small sizes, and

associated with them, a less dense spectrum of resonant mode

frequencies. It is also worth emphasizing here one principal

feature of SDRS revealed by the Q-value computations. The

maximum value of the SDR Q-factor can exceed the level

determined by intrinsic losses in the dielectric. For Wg-modes

with m = 5–8 the excess is about a few percent.

Another results obtained from the two-dimensional model

concern the dependence of resonant frequency on geometry.

In particular, Fig. 3 shows the free space wave number k =
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2Tf/VC as a function of the ratio of the shield radius c to

the rod radius b for two modes Es, I and ~s,l. The different

behavior of the resonant frequencies of E- and H-modes at
variations of the shield radius allows a simple way of mode

identification in the real three dimensional SDR.

111, GENERAL EQUATIONS AND ITS SOLUTION

In accordance with the partial region approach, the expres-

sions for the z-components of ihe electromagnetic field in

different regions of the SDR can be presented in the same

manner as was done in [6]. By matching tangential components

of the H and E fields on the cylindrical surface of the

dielectric disk (p = b) and requiring the vanishing of EZ and
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Fig. 3. Resonant frequencies of Ha, ~- and Es, ~-modes of the shielded

dielectric rod resonator versus ratio of the shield radius to dielectric rod radius.

E@ at the surface of metal side walls (O = c) we can obtain..
the following characteristic equation:

[
*LJ9Tb) – :Jm(9Tb)

1

[ 1
“ :M9nb) – @9nb) 9;

[ I’[%F]’
= Jm(gTb)Jm(gnb) g

where

fl = $n(93b)Jk(g3c) - ~m(g3c)ym(g3b)

f’ = Jm(g3b)ym(g3c) - Jm(g3c)ym(93b),

f3 = Jm (g3b)ym(g3c) - Jm(g3c)k(93b),

f4 = Jm(93~)ym(93c) - ~m(g3c)Ym(g@).

(1)

(2.1)

(2.2)

(2.3)

(2.4)

Here J~ and Yn are Bessel and Neumann functions of the

order m, respectively. The dot over J~, Y~ denote deriva-

tives with respect to the argument. Equation (1) relates two

unknown values: the free space wave number k and the

longitudinal propagation constant ~. All other parameters in

(1) can be expressed through k and ~: g$ = k2 – ~2, g: =

k2Sn – ,62, g: = (~./sn)g~, where ~. and Sn are components

of permittivity tensor parallel and perpendicular to z-axis of

the disk. Crystal axis of sapphire is supposed to be parallel to

symmetry axis of resonator.

Characteristic equation (1) is valid only for k > ~. For

k < /3 (1) becomes

[

cngT h3 .
—J.(gT6) + ~J~(g#)

9: 1

[ 1
~ Jm (gn~) + ~Jm(gn~) hi

[ I’[$F]’ ‘3)
– J~ (g. b) J~(g.b) ~—
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Fig. 4. Graphical solution of the system of characteristic equations for
m=8, b= 17.2 mm,2h = 11,5 mm, clb= 1.6 rmd.slh = 2.

where h: = ~2 – k2. The expressions for VI . . . pq are

obtained from the corresponding expressions for fl . . .f4
by changing the Bessel functions J~, Y~ to modified ones

1~, Km. For example,

At a given value of ~ (1) represents an oscillating function

of k with the infinite number of roots. The dependencies

of the first two smallest roots, kl~ and klH, versus ~,

obtained at m = 8, b = 17.2 mm, c/b = 1.6 are shown in

Fig. 4. These dependencies describe the behaviour of hybrid

electromagnetic waves with one field variation along the radius

and m variations along azimuthal direction, propagating in

a shielded dielectric rod waveguide. Subscripts B and H

imply that in the limiting case when ,6 = O, hybrid modes

characterized by ICIE and klH wave numbers are transformed

into the E- and H-modes, respectively, of the infinite SDR.

For k > /3 (i.e., in the field above the k = ,6 line in Fig. 4)

the phase velocity of hybrid waves Vpk is huger than velocity

of light VC, while for k < ~ we have Vph < VC.

In order to study the solution of (1) or (3) in the transi-

tion region where Vph = V., both analytical and numerical

approaches can be used. The former requires the use of

expansions for cylindrical functions J~ (z) and Ym (z) as

x ~ O and results in a very cumbersome equation with respect

to k. We employ the latter approach, and linearly interpolate

the real curve k(/3) in the small region about the point k = ~.

This is a more universal method to find the general solution at

k = ,6 as it may be used for analysis of other similar structures,

such as the shielded dielectric ring resonator.

Another set of characteristic equations complementary to ( 1)

follows from the boundary conditions on the top of the disk

(,z = h) and on the surface of the metal lid (z = s). To get

these equations in the framework of present model we must
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assume that one of the two longitudinal field components of

hybrid mode becomes zero in the process of axial matching.

Assuming this, for the transverse magnetic or E-mode, with

a symmetrical field distribution inside the disk (EZ N cos /?z)

we obtain the following characteristic equation

@tan{@h} = Cna tanh{a(s - h)}, (5)

where Q2 = k2(eT – 1) - /32(&r/&n), h is a half height of the

dielectric disk and .s is a half height of the metal cavity.

A similar equation for the transverse electric or H-mode,

with H= N cos ~z, is given by

~tan{~lz} = a/ tanh{ci(s - h)}, (6)

where

a2 = k2(&n – 1) –@z.

In the latter case it is necessary to bear in mind that for

p < p~,, where PC, k the root of the equation /3tan{/3h} =

1/(s – h), (6) has to be rewritten as

~tan{~h} = a/ tan{a(s - h)}, (7)

where a2 = ~2 – k2 (sn – 1). The physical reason for this is

that the resortant frequency of H-modes increases when the

clearance t = s – h between the dielectric and the metal

surfaces decreases, and above a certain critical value of t

(when ~ < ~cr) the resonant frequency becomes larger than

the cutoff frequency of hollow waveguide above the dielectric

disk. For E-modes such a problem does not arise as their

resonant frequency reduces with decreasing t.

Equations (5) and (6) do not permit art analytical solution,

so that the function k(~) must be obtained numerically. The

form of k(@, denoted kzE and kzH for 1?- and H-modes,

respectively, are shown in Fig. 4. These results were obtained

at 2h = 11.5 mm, s/h = 2 and P < ,&ax = ~/2h, i.e., for

modes with one field variation along z-axis.

The graphical solution of the system of characteristic equa-

tions ( l)–(6) is determined by the intersection points p. 1 and

p.2 in Fig. 4. For the specified geometry of the SDR, the

resonant frequency of the hybrid H8, 1,1-mode (p. 1) is larger

than that of hybrid &,l,l-mode (p.2). However, point P.2

moves to the right along the curve klE faster than point p. 1

along klH” when the height of the disk is decreased. This

results in the resonant frequency of hybrid E-mode in the disk

with large b/ 2h ratio being larger than that of hybrid H-mode.

Fig. 4 also shows that the operating regime of SDRS
may be quite different depending on the type of mode.

Thus, for the Eg,l,l-mode (where the solution is in the

fast phase velocity area) the electromagnetic fields in the

region outside the dielectric disk are described by oscillating

functions J~ (z) and Ym (z). In contrast, for the Hg,l,l-tIIOde,

the radial dependence of external fields is a superposition of

exponentially varying functions 1~ ($) and Km(x).
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Fig. 5. Product Q tan 6 (curves 1, 2, 3) and relative frequency shift (curve

4) as a function of the ratio of the shield radius to dielectric disk radius
for ES, 1,1 -mode and sapphire disk sizes b = 2h = 17.2 mm. Curve 1:

s/h = 1.2, T z 293 K, copper shield. Curve 2: s~h = 2.5, T = 4.2 K,

niobhm shield. Curve 3: s/h = 2.5, T = 4.2 K, copper shield.

IV. DISCUSSION

In the following section the resonant frequency obtained

from the numerical solution of (l)–(6) is used to compute the

modal field distribution in the SDR and its Q-factor. During

this process all six field components of hybrid mode are taken

into account except the partial region above the dielectric disk.

Here, as mentioned above, field components Ez and Hz can

not coexist and one of them must be set equal to zero.

Fig. 5 shows the influence of the metal shield radius on the

Q-factor and the resonant frequency of a mode for a dielectric

disk with b = 2h = 17.2 mm. The curves designated by

numbers 1, 2, 3 in Figs. 5 and 6 characterize three important

practical cases: {1} a room temperature SDR with copper

shield, {2} a liquid He-temperature SDR with a niobium shield

and {3} a liquid He-temperature SDR with copper shield. For

all curves in the Fig. 5 the height of the metal cavity s is large

enough and does not restrict the Q-factor.

The results at liquid He-temperature were obtained for

tan 6 = 2.4 x 10-10 [3] and the temperature dependence of

the surface resistivity of niobium Rs given by the following

equation [10]:

R., ohm = Bw~”7

. exp
[ 1
–1.883A(T) + R,,S, (8)

where B = 7.1 x 10–22, w is the angular resonant frequency

in radlsec, T. = 9.25 K,

/()
2

A(T) = COS : f , R,e, = 5 x 10-8 ohm.
c

For copper we considered that R, (4.2 K) = R. (293 K)/50.
Curve 4 in Fig. 5 gives the relative frequency shift A f / f
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(curve 4) as a function of the ratio of the metal cavity height to dielectric disk
height for E8, ~,~-mode and sapphire dkk sizes b = 2h = 17.2 mm. Curve

1: c/b = 1.7, T = 293 K, copper shield. Curve 2: c/b = 1.9, T = 4,2 K,
niobium shield. Curve 3: c/b = 2.2,2’ = 4.2 K, copper shield.

as a function of the shield radius. Like the resonant frequency

of E-mode in the two-dimensional model (Fig. 3) the resonant

frequency of hybrid E-mode goes up when the shield radius

decreases.

The Q-factor and frequency shift as a function of the metal

cavity height are shown in Fig, 6. Unlike the previous case,

the frequency shift here is negative and increases rapidly with

decreasing the height of the metal cavity. This means that

under certain conditions the resonant frequency of the SDR

can be made independent of the position of the metal walls

and its surface reactance. Hence, the temperature dependence

of the SDR resonant frequency will be determined by only the

temperature dependent dielectric constants e. and en,

To understand the dependence of SDR properties on geom-

etry it is useful to examine relative power losses and stored

energy in different regions of the SDR. The results are given

in Table I. Thus, when the metal cavity radius decreases from

c = 1.7b to c = 1.2b (transition from p.A to p.B in Fig. 5), the

SDR Q-factor decreases by about a factor of two due to the

growth losses in the side walls (see Table I). The distribution of

the stored energy in SDR in this case varies only slightly. On

the other hand, when the height of the metal cavity decreases

(transition from p,A to p.C in Fig. 6) the decrease of the Q-

factor arises as a result of big power losses in the end lids

(see Table I). It should be noted that the losses in the end

lids of the SDR decrease faster than in the side walls which

causes the difference in the rising curves in Figs. 5 and 6. The

physical reason for this is the more fast decay of the external

(with respect to the sapphire disk) electromagnetic fields in

the axial direction than in the radial one.

The above model has been applied to the first Sapphire

Loaded Superconducting Cavity (SLOSC). The sapphire res-

onator was a 31.8 mm diameter cylinder, 30.2 mm length, with

integral (thin) mounting spindles at each end and the crystal

c-axis coinciding within 1 degree of the geometrical axis. The

TABLE I

I in the dielectric disk
Relative
energy

stored e
in the space above
and under disk

P.A

0.9891

0.0024

0.0084

0.9823

0.0044

0.0132

aP.B p.c

0.4805 0.4815

0.5156 0.0014

0.0038 0.517

0.9880 0.9605

0.0043 0.0259
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Fig. 7. Product Q tan 6 as a function of the ratio of the radii c/b for H6, ~,~-

and ~e, 1,1 -modes in the SLOSC.

sapphire was mounted in a cylindrical niobium cavity with

radius 50 mm and height 50 mm.

For fundamental modes with m = 6-10 the difference

between the calculated and measured frequencies is approx-

imately 0,06-0.1 f% for the same values of en and CT (9.289

and 11.355 at T = 4.2 K, respectively), which were used in

[6].

The Q-factor computed for two modes ~b,l,l and ~b,l,l is

shown in Figs. 7 and 8. First of these modes with ~,e, = 9.73

GHz and Q = 2 x 109 at T = 4.2 K was the operating one in

the SLOSC [4]. From the results presented in Figs. 7 and 8 we

can conclude that despite of the very large measured quality

factor its value is about 60% of the maximum achievable level.

Two main reasons restrict the SLOSC Q at T = 4.2 K: small

azimuth number and power losses in the side walls. The Q-

factor at the given operating frequency could be increased

by increasing the size of the shield. Another way to increase

the Q-factor without changing the cavity design is to cool

the resonator below 4 K. We estimate that at T = 2.2 K

the power losses in the side walls will be much smaller

than power dissipation in the dielectric which is practically
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V. RESTRICTIONS OF THE MODEL
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independent on the temperature for T < 8 K [11], and the

SLOSC Q-factor will reach its maximum value. Theoretical

and experimental dependence of the Q-factor on temperature

for the above SLOSC are shown in Fig. 9. They demonstrate

a good agreement in the temperature range 2-6 K.

The assumptions made during the deduction of characteristic

equations (1)–(6) and expressions for the Q-factor restrict

the accuracy of the model. To test the limits of validity of

the model, the height of the sapphire disk was allowed to

approach to infinity and the results were compared with the

ones obtained from the two-dimensional model. It was found

that for -E-modes with m < 5 the three-dimensional model

does not describe adequately the Q-factor when the shield

radius c is big enough. For example, at m = 5 the maximum

shield radius c~ax must be lower than 2.6b. It should be noted

that in this case the model is formally valid, because a hollow

waveguide of radius c remains below cutoff, while c < 3.95b.

For H-modes the results of three-dimensional modelling

converge well to the exact solution even at m = 4 for shield

radii varying in the whole operating range from c = b to
C = 2.3b.

For our model to be consistent with experiment, the mini-

mum value of the azimuth number must be equal to 6 and the

b/2h ratio must not exceed 1.5-2.

VI. CONCLUSION

A simple version of the Partial Region Method has been

applied to the analysis of whispering-gallery modes in shielded

dielectric disk resonators. For modes with high azimuth num-

bers (m > 6) the method presented allows a detailed design of

such resonators including the optimization of their geometry,

quality factors and susceptibility to shield vibrations. During

the work on this paper this method has been successfully

0.3 ~ (.)

().2 L-_---_L__2_J
234567

Temperature, K

Fig. 9. Normalized value of the Q -factor versus temperature for

H6, 1,1 -mode in the SLOSC. Calculated results are represented by continuous

line, experimental data by black squares.

used in order to design the room temperature SDR’S with the

smallest possible sizes and the Q-factor dominated by the only

intrinsic losses in sapphire. Such cavities allow a very low

density of spurious modes and can have valuable applications

in the microwave techniques.

ACKNOWLEDGMENT

The authors wish to thank Dr. Anthony Mann and Dr. Marco

Costa for their general assistance and valuable advice.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

RE~RENCES

D. G, Blair and S, K. Jones, “A high-Q sapphire loaded superconducting

cavity resonator,” J. Phys. D: Appl. Phys., vol. 20, pp. 1559-1566, 1987.
S. K. Jones, D. G. Blair, and M. J. Buckingham, “Effect of psrrunagnetic
impurities on frequency of sapphke loaded superconducting cavity
resonators:’ Electron. Lett.. vol. 24, no. 6, pp. 364-347, 1988.
S. K. Jones and D. G. Blair, “High-quatity factors for a sapphire-loaded
superconducting cavity resonator,” Electron. Lett., vol. 23, no. 16, pp.

817-818, 1988.
A. J. Giles, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A high

stability oscillator based on a sapphire-loaded superconducting cavity,”
Proc. 43rd Ann. Freq. Control Symp., 1989, pp. 89-93.
M. Tsuji, H. Shlgesawa, and K. Takiyama, “On the complex resonant
frequeucy of open dielectric resonators,” [El% Trans. Microwave Theory
Tech., vol. 31, no. 5, pp. 392–396, 1988.
M. Tobar and A. Mann, “Resonant frequencies of higher order modes
in cylindrical anisotropic dielectric resonators,” IEEE Trans. Microwave
Theory Tech., vol. 39, no. 12, pp. 2077-2082.
D. Kajfez and P. Guillon, Dielectric Resonators. Norwood, MA:

Artech House, 1988.
V. F. Vzyatyshev, V. I. Kalinichev, and V. I. Kuimov, “Physical
phenomena in shielded dielectric rod resonator and problems of its

design: Radio Engineering and Electronic Physics, no. 4, pp. 705-712,
1985.
E. N. Ivanov and V. I. Kafinichev, “Analysis of complex spectrum of
open dielectric resonator,” Radiotechnique, no. 2, pp. 40-42, 1988.

[101 V. B. Bra~inskv, V. P. Mitrofanov, and V. I. panov, System with sma~~
Dissipation;. C~cago: University of Chicago Press, 1985.

[11] V. B. Braginsky, V. S. Ilchenko, and K. S. Bagdassarov, “Experimen-
tal observation of fundamental microwave absorption in high-quality
dielectric crystals:’ Physics Lercers A, vol. 120, no. 6, pp. 30&305,

1987.



638 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 4, APRIL 1993

Eugene N. Ivanov was born in Moscow, Russia,
on August 14, 1956. He received the “Diploma
of Engineer” in radio engineering in 1979 and the
Ph.D. degree in radio electronic systems in 1987,

both from Moscow Power Engineering Institute

(MPEI). His dissertation was entitled “Low-phase-
noise Gurrn oscillators with electronic tuning of

operating frequency.”
From 1979 to 1991 working at the Department

of Radio engineering of MPEI (except the period

1982-84 when he served in the anti-aircraft unit)

he was engaged in the development of low-noise microwave oscillators for
radar and communication systems. In 1980 in common with Dr. D. Tsarapkin
he employed a new type of microwave resonators—sapphire dielectric disk
resonator excited in whispering-gallery modes—for frequency stabilization of

Gunn diode oscillator. His research interests include frequency stabilization
of microwave oscillators, noise phenomena in microwave systems and applied

electrodynamics. In 1990 in collaboration with Dr. V. Kalinichev he developed

a concept of sapphire loaded circuits with enhanced Q-factor and studied its

performance. Since 1991 he has been with the University of Western Australia

as a Research Associate on the Sapphire Clock Project and Gravity Wave
Project. He is currently involved in the design of microwave signal processing
system for gravitational wave antenna with non-contacting readout.

David G. Blair was born in Hampshire, England,

on November 25, 1946. He received the B.Sc.(hens)
degree in physics from the University of Western

Australia in 1967. In 1972 he received the Ph.D.

degree from the University of East Anglia, England.

His dissertation was entitled “Superflow: A Study of

Superfluid Helium Films,”

From 1972 to 1973 he was a Science Research

Associate at the University of East Anglia. His

research included design of high-vacuum, optical,
cryogenic, and superconducting apparatus. From

1973 to 1976 he was a Visiting Assistant Professor at Louisiana State
University. Since 1976 he has been with the University of Western Australia,
where he is now an Associate Professor in the Department of Physics. He
is a chief investigator and initiator of the Gravitational Radiation Research
Project at the University of Western Australia. His research has included the
study of low acoustic loss systems, high Q electromagnetic resonators, design
of gravitational wave detectors, the birthrate of supernovae and pulsars as
sources of gravitational waves,


