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Approximate Approach to the Design
of Shielded Dielectric Disk Resonators
with Whispering-Gallery Modes

Eugene N. Ivanov, David G. Blair, and Victor I. Kalinichev

Abstract— An analytical method is presented for calculating
the resonant frequency and the Q-factor of shielded dielectric
disk resonators excited in whispering-gallery modes. The method
is based on a single-mode representation of electromagnetic fields
in partial regions of the resonator. For high order modes with
high degree of energy concentration in the dielectric this method
gives a good agreement with experimental results obtained for
different sapphire disks at both room temperature and cryogenic
temperatures.

1. INTRODUCTION

ROPERTIES OF the electromagnetic whispering-gallery

modes (W g-modes) in a dielectric disk fabricated from a
very high purity sapphire crystal mounted inside a cylindrical
superconiducting cavity has been experimentally investigated
by Blair [1]. Extremely high values of the (J-factor are
achievable at these modes (up to 4.3 x 10° at T = 2.2
K). The low sensitivity of such resonators to environmental
perturbations, along with the presence of turning points in the
temperature dependence of resonant frequency [2], [3] allows
one to create a very high performance microwave frequency
standard with fractional frequency stability less than 10714 for
integration time between 3-300 sec [4].

The design of such resonators requires the accurate com-
putation of the resonant frequency and the -factor of the
operating mode. Although there are a number of rigorous
and approximate approaches to analysis of Shielded Dielectric
Disk Resonators (SDR), these are generally devoted to low-
order modes in miniature ceramic resonators of very high
permittivity € > 30 [5]. The method described here is an exten-
sion of an approximate one which has been used previously for
analysis of high-order modes in open sapphire disk resonators
[6]. It belongs to the group of mode matching methods and
is a simplified version of the Partial Region Method (PRM)
[7]. According to this method electromagnetic fields in the
each partial region of the cavity are expressed in terms of
single eigenmodes with unknown amplitude coefficients. The
coefficients are found by the process of matching tangential
components of the H and F fields on the boundary between
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adjacent regions. This matching also results in a system of
characteristic equations which allows the resonant frequency
to be defined.

As for the fundamental Wg-modes in the open sapphire
cavity the accuracy of the frequency calculation using this
method improves with the growth of azimuth number m and
can be about 0.1% for m > 6-8 [6]. This is because most of
the electromagnetic energy of Wg-mode is confined to a small
region near the circumference of the disk and one can neglect
the scattered fields near the disk edges. For low-order Wg-
modes (m < 6) in comparatively “thin” disks, this assumption
is not exactly true and more rigorous modifications of the PRM
must be used.

In this paper we first consider a simple 2 dimensional
model for SDR’s, which is useful for understanding their
general properties. In Section III we describe the generalized
3 dimensional model. Results of computation and comparison
with experiment are presented in Section IV, while in Section
V we discuss the limits of our mathematical model.

II. PROPERTIES OF W ¢g-MODES IN INFINITE SDR

A schematic drawing of the SDR is shown in Fig. 1. To
qualitatively explain some basic properties of the SDR it is
enough to consider a two-dimensional model consisting of
an infinite dielectric rod placed coaxially inside a cylindrical
metal shield. Such a model allows one to study the influence of
shield on the Q-factor of Wg-modes, and to understand why
the total sizes of the SDR can be much smaller than those of
an open unshielded resonator.

The general solution of this problem for waves travelling
along the ¢-direction has been obtained in [8]. We use
some of these results to study in detail one of the most
important situations: a sapphire rod inside a copper shield.
Calculations have been accomplished for two mode families
existing independently in the SDR under such conditions:
for E-modes characterized by E,, H,, H, -components and
for H-modes with H_, E,, I -components. The frequency
dependence of the sapphire loss tangent and the surface
resistivity of copper at room temperature are assumed to
be described by the following empirical equations: tané =
5 x 1077f, where f is a frequency in GHz, and R, =
4.45 x 1073,/f/V., where f is a frequency in Hz and V,
is the velocity of the light in vacuum in m/sec. The radius of
the sapphire rod b is assumed to be kept constant whereas the
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Fig. 1. Schematic drawing of the shielded dielectric disk resonator.

shield radius ¢ is varied from ¢ = b to ¢ = 5b. The valve b
chosen, 17.2 mm, is a typical value for X-band cavities.

Results of calculations for fundamental E- and H -modes
with one node along the radius and m nodes in the azimuthal
direction are shown in Fig. 2(a) and (b), respectively. The
mechanism of the maximums in Fig. 2(a) and (b) is related to
non-monotonic dependence of the power losses in the metal
shield at variations of its radius. The maximum value of @
for E-modes is achieved at smaller azimuth number (m = 4)
than for H-modes (m = 6). This property which holds also
for three dimensional SDR can be used to substantially reduce
the size and cost of dielectric disk resonators. For instance,
at f = 10 GHz the radius of the dielectric rod is equal to
8.8 mm for E4; -mode and 15.1 mm for Hg ;1-mode. In both
cases the Q-factor is dominated by only the intrinsic losses in
sapphire (Q = 2 x 10°) provided the shield radius is chosen
to be equal to 23-25 mm.

Such Q-factors are unachievable in open resonant systems,
(such as a solid dielectric rods or disks in free space) if low
azimuth numbers (m = 4-6) because large radiation losses.
Thus the Q-factor of E41-mode in an open resonator does
not exceed 10% [9]. To make the radiation losses negligible
compared with the power dissipated in the dielectric it is
necessary to increase the azimuth number and simultaneously
the radius of the rod in order to keep the resonant frequency
constant. From our previous work [9] one can calculate that
radiation losses cease to restrict the @-factor of the E-modes
for m > 9. In this case the sapphire rod radius must be 17
mm to allow a 10 GHz resonant frequency.

Therefore, at least two main advantages of SDR become
evident from the two-dimensional model: small sizes, and
associated with them, a less dense spectrum of resonant mode
frequencies. It is also worth emphasizing here one principal
feature of SDRs revealed by the Q-value computations. The
maximum value of the SDR @-factor can exceed the level
determined by intrinsic losses in the dielectric. For Wg-modes
with m = 5-8 the excess is about a few percent.

Another results obtained from the two-dimensional model
concern the dependence of resonant frequency on. geometry.
In particulat, Fig. 3 shows the free space wave number k =
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Fig. 2. Q-factor as a function of the ratio of the shield radius to dielectric
rod radius for E -modes and H-modes at room temperature. (a) E-modes.
(b) H-modes.

27 f/V, as a function of the ratio of the shield radius ¢ to
the rod radius b for two modes Fs; and Hg ;. The different
behavior of the resonant frequencies of E- and H-modes at
variations of the shield radius allows a simple way of mode
identification in the real three dimensional SDR.

III. GENERAL EQUATIONS AND ITS SOLUTION

In accordance with the partial region approach, the expres-
sions for the z-components of the electromagnetic field in
different regions of the SDR can be presented in the same
manner as was done in [6]. By matching tangential components
of the H and E fields on the cylindrical surface of the
dielectric disk (p = b) and requiring the vanishing of E, and
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Fig. 3. Resonant frequencies of Hg 1- and Eg j-modes of the shielded
dielectric rod resonator versus ratio of the shield radius to dielectric rod radius.

E, at the surface of metal side walls (p = ¢) we can obtain
the following characteristic equation:

€ngre f3
(gt - 2 Tnfa)
NEY il 2
{gnJm(gnb) f4J (gnb)Jg
B mB1* (g3 - g21
= Tnla:t)nant) | 12| [E22] )
where
A= 'm(ggb)Y (93¢) = Jm(936)¥m(gsd)  (2.1)
f2=1J Jm(g3b)Yr, (930)*Jm(930)¥m(93b), (2.2)
J3 = JIm(930)Ym(g3c) — Jm(g3c)Ym(gsb),  (2.3)
f1 = Tn(930)Yin(g3¢) — Jin(936)Vin(g3h).  (24)

Here J,, and Y,,, are Bessel and Neumann functions of the
order m, respectively. The dot over J,,,Y,, denote deriva-
tives with respect to the argument. Equation (1) relates two
unknown values: the free space wave number k& and the
longitudinal propagation constant 5. All other parameters in
(1) can be expressed through k and 3: g3 = k2 — (5,492 =
k%e, — 32,92 = (¢, /€n)g2, where €, and &,, are components
of permittivity tensor parallel and perpendicular to z-axis of
the disk. Crystal axis of sapphire is supposed to be parallel to
symmetry axis of resonator.

Characteristic equation (1) is valid only for ¥ > . For
k < B (1) becomes
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Fig. 4. Graphical solution of the system of characteristic equations for
m=28,b=172mm, 2k = 11.5 mm, ¢/b = 1.6 and s/h = 2.

where hZ = (32 — k2. The expressions for @1 --- ¢, are
obtained from the corresponding expressions for fi--- f4
by changing the Bessel functions J,,,Y,, to modified ones
I, K. For example,
01 = Iy (h3b) K (hac) — Im(hsc) K (hsb).

At a given value of 3 (1) represents an oscillating function
of k with the infinite number of roots. The dependencies
of the first two smallest roots, kigp and kigy, versus (3,
obtained at m = 8,b = 17.2 mm, ¢/b = 1.6 are shown in
Fig. 4. These dependencies describe the behaviour of hybrid
electromagnetic waves with one field variation along the radius
and m variations along azimuthal direction, propagating in
a shielded dielectric rod waveguide. Subscripts z and g
imply that in the limiting case when 8 = 0, hybrid modes
characterized by k15 and k1 wave numbers are transformed
into the E- and H-modes, respectively, of the infinite SDR.
For k£ > (3 (i.e., in the field above the k£ = 3 line in Fig. 4)
the phase velocity of hybrid waves V,, is larger than velocity
of light V., while for & < 8 we have V,;, < V..

In order to study the solution of (1) or (3) in the transi-
tion region where Vi, = V;, both analytical and numerical
approaches can be used. The former requires the use of
expansions for cylindrical functions J,,(z) and Y, (z) as
x — 0 and results in a very cumbersome equation with respect
to k. We employ the latter approach, and linearly interpolate
the real curve k(f) in the small region about the point k = (3.
This is a more universal method to find the general solution at
k = (3 as it may be used for analysis of other similar structures,
such as the shielded dielectric ring resonator.

Another set of characteristic equations complementary to (1)
follows from the boundary conditions on the top of the disk
(2 = h) and on the surface of the metal lid (z = s). To get
these equations in the framework of present model we must
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assume that one of the two longitudinal field components of
hybrid mode becomes zero in the process of axial matching.
Assuming this, for the transverse magnetic or F-mode, with
a symmetrical field distribution inside the disk (E, ~ cos ;)
we obtain the following characteristic equation
Btan{fh} = e atanh{a(s — h)}, ®)

where o = k?(e, — 1) — $%(e+/en), b is a half height of the
dielectric disk and s is a half height of the metal cavity.

A similar equation for the transverse electric or H-mode,
with H, ~ cosf3,, is given by

Btan{Bh} = a/tanh{a(s — h)}, ®

where
O[z = kz(&'n - 1) — 52.

In the latter case it is necessary to bear in mind that for
B < Ber, where (., is the root of the equation 8tan{gGh} =
1/(s — h), (6) has to be rewritten as

Btan{ph} = o/ tan{a(s — h)}, @)
where a? = 32 — k%(e,, — 1). The physical reason for this is
that the resonant frequency of H-modes increases when the
clearance ¢ = s — h between the dielectric and the metal
surfaces decreases, and above a certain critical value of ¢
(when 8 < f.,) the resonant frequency becomes larger than
the cutoff frequency of hollow waveguide above the dielectric
disk. For E-modes such a problem does not arise as their
resonant frequency reduces with decreasing £.

Equations (5) and (6) do not permit an analytical solution,
so that the function k() must be obtained numerically. The
form of k(8), denoted kg and koy for E- and H-modes,
respectively, are shown in Fig. 4. These results were obtained
at 2h = 11.5 mm, s/h = 2 and B8 < Bmax = 7/2h, i.e., for
modes with one field variation along z-axis.

The graphical solution of the system of characteristic equa-
tions (1)—(6) is determined by the intersection points p.1 and
p.2 in Fig. 4. For the specified geometry of the SDR, the
resonant frequency of the hybrid Hg , i-mode (p.1) is larger
than that of hybrid Eg;i-mode (p.2). However, point p.2
moves to the right along the curve k,g faster than point p.1
along kipz when the height of the disk is decreased. This
results in the resonant frequency of hybrid £-mode in the disk
with large b/2h ratio being larger than that of hybrid /{-mode.

Fig. 4 also shows that the operating regime of SDRs
may be quite different depending on the type of mode.
Thus, for the Es;1-mode (where the solution is in the
fast phase velocity area) the electromagnetic fields in the
region outside the dielectric disk are described by oscillating
functions J,, () and Y, (z). In contrast, for the Hg ; ;-mode,
the radial dependence of external fields is a superposition of
exponentially varying functions In,(z) and K, (x).
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Fig. 5. Product @ tan é (curves 1, 2, 3) and relative frequency shift (curve
4) as a function of the ratio of the shield radius to dielectric disk radius
for Eg 1 ,;-mode and sapphire disk sizes b = 2h = 17.2 mm. Curve 1:
sfh = 1.2,T = 293 K, copper shield. Curve 2: s/h = 2.5, = 4.2 K,
niobium shield. Curve 3: s/h = 2.5, T = 4.2 K, copper shield.

IV. DISCUSSION

In the following section the resonant frequency obtained
from the numerical solution of (1)—(6) is used to compute the
modal field distribution in the SDR and its ()-factor. During
this process all six field components of hybrid mode are taken
into account except the partial region above the dielectric disk.
Here, as mentioned above, field components F, and H, can
not coexist and one of them must be set equal to zero.

Fig. 5 shows the influence of the metal shield radius on the
Q-factor and the resonant frequency of a mode for a dielectric
disk with b = 2A = 17.2 mm. The curves designated by
numbers 1, 2, 3 in Figs. 5 and 6 characterize three important
practical cases: {1} a room temperature SDR with copper
shield, {2} a liquid He-temperature SDR with a niobium shield
and {3} a liquid He-temperature SDR with copper shield. For
all curves in the Fig. 5 the height of the metal cavity s is large
enough and does not restrict the (J-factor.

The resuits at liquid He-temperature were obtained for
tand = 2.4 x 10719 [3] and the temperature dependence of
the surface resistivity of niobium R, given by the following
equation [10]:

R,, ohm = Bw'”

- exp [-1.88%’-A(T}] 4+ Ries, (8

where B = 7.1 x 10722, w is the angular resonant frequency
in radfsec, 1T, = 9.25 K,

2
A(T) = Hcos%(%) , Ries = 5 x 107 ohm.

For copper we considered that R,;(4.2 K) = R,(293 K)/50.
Curve 4 in Fig. 5 gives the relative frequency shift Af/f
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1: ¢/b = 1.7, T = 293 K, copper shield. Curve 2: ¢/b = 1.9,T = 4.2 K,
niobium shield. Curve 3: ¢/b = 2.2, T = 4.2 K, copper shield.

as a function of the shield radius. Like the resonant frequency
of E-mode in the two-dimensional model (Fig. 3) the resonant
frequency of hybrid E-mode goes up when the shield radius
decreases.

The @Q-factor and frequency shift as a function of the metal
cavity height are shown in Fig. 6. Unlike the previous case,
the frequency shift here is negative and increases rapidly with
decreasing the height of the metal cavity. This means that
under certain conditions the resonant frequency of the SDR
can be made independent of the position of the metal walls
and its surface reactance. Hence, the temperature dependence
of the SDR resonant frequency will be determined by only the
temperature dependent dielectric constants €, and &,.

To understand the dependence of SDR properties on geom-
etry it is useful to examine relative power losses and stored
energy in different regions of the SDR. The results are given
in Table I. Thus, when the metal cavity radius decreases from
¢ = 1.7b to ¢ = 1.2b (transition from p.A to p.B in Fig. 5), the
SDR -factor decreases by about a factor of two due to the
growth losses in the side walls (see Table I). The distribution of
the stored energy in SDR in this case varies only slightly. On
the other hand, when the height of the metal cavity decreases
(transition from p.A to p.C in Fig. 6) the decrease of the Q-
factor arises as a result of big power losses in the end lids
(see Table I). It should be noted that the losses in the end
lids of the SDR decrease faster than in the side walls which
causes the difference in the rising curves in Figs. 5 and 6. The
physical reason for this is the more fast decay of the external
(with respect to the sapphire disk) electromagnetic fields in
the axial direction than in the radial one.

The above model has been applied to the first Sapphire
Loaded Superconducting Cavity (SLOSC). The sapphire res-
onator was a 31.8 mm diameter cylinder, 30.2 mm length, with
integral (thin) mounting spindles at each end and the crystal
c-axis coinciding within 1 degree of the geometrical axis. The
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TaBLE 1
p.A p.B p.C
. in the dielectric disk | 0.9891 0.4805 | 0.4815
Relative
power | in the side walls 0.0024 | o0.5156} 0.0014
losses I the end lids 0.0084 | 0.0038| 0.517
in the dielectric disk| 0.9823 | 0.9880 | 0.9605
Relative
energy geﬁ:::“s;:"f‘;ces 0.0044 | 0.0043 |0.0259
stored yindr.
in the space above
and under disk 0.0132 | 0.0077 | 0.0135
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Fig.7. Product @ tan § as a function of the ratio of the radii ¢/b for Hg 1 1-
and Fg,1,1-modes in the SLOSC.

sapphire was mounted in a cylindrical niobium cavity with
radius 50 mm and height 50 mm.

For fundamental modes with m = 6-10 the difference
between the calculated and measured frequencies is approx-
imately 0.06-0.1% for the same values of ¢, and e, (9.289
and 11.355 at T = 4.2 K, respectively), which were used in
[6].

The @Q-factor computed for two modes Heg 11 and Es 1 is
shown in Figs. 7 and 8. First of these modes with fes = 9.73
GHz and Q = 2 x 109 at T = 4.2 K was the operating one in
the SLOSC [4]. From the results presented in Figs. 7 and 8 we
can conclude that despite of the very large measured quality
factor its value is about 60% of the maximum achievable level.
Two main reasons restrict the SLOSC @ at T = 4.2 K: small
azimuth number and power losses in the side walls. The Q-
factor at the given operating frequency could be increased
by increasing the size of the shield. Another way to increase
the ()—factor without changing the cavity design is to cool
the resonator below 4 K. We estimate that at 7 = 2.2 K
the power losses in the side walls will be much smaller
than power dissipation in the dielectric which is practically
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Hg 1,1- and Es,1,1-modes in the SLOSC.

independent on the temperature for 7' < 8 K [11], and the
SLOSC @Q-factor will reach its maximum value. Theoretical
and experimental dependence of the (J-factor on temperature
for the above SLOSC are shown in Fig. 9. They demonstrate
a good agreement in the temperature range 2-6 K.

V. RESTRICTIONS OF THE MODEL

The assumptions made during the deduction of characteristic
equations (1)~(6) and expressions for the ()-factor restrict
the accuracy of the model. To test the limits of validity of
the model, the height of the sapphire disk was allowed to
approach to infinity and the results were compared with the
ones obtained from the two-dimensional model. It was found
that for F-modes with m < 5 the three-dimensional model
does not describe adequately the Q-factor when the shield
radius c is big enough. For example, at m = 5 the maximum
shield radius ¢max must be lower than 2.6b. It should be noted
that in this case the model is formally valid, because a hollow
waveguide of radius ¢ remains below cutoff, while ¢ < 3.95b.

For H-modes the results of three-dimensional modelling
converge well to the exact solution even at m = 4 for shield
radii varying in the whole operating range from ¢ = b to
c = 2.3b.

For our model to be consistent with experiment, the mini-
mum value of the azimuth number must be equal to 6 and the
b/2h ratio must not exceed 1.5-2.

VI. CONCLUSION

A simple version of the Partial Region Method has been
applied to the analysis of whispering-gallery modes in shielded
dielectric disk resonators. For modes with high azimuth num-
bers (m > 6) the method presented allows a detailed design of
such resonators including the optimization of their geometry,
quality factors and susceptibility to shield vibrations. During
the work on this paper this method has been successfully
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Fig. 9. Normalized value of the @ -factor versus temperature for
Hg,1,1-mode in the SLOSC. Calculated results are represented by continuous
line, experimental data by black squares.

used in order to design the room temperature SDR’s with the
smallest possible sizes and the Q)-factor dominated by the only
intrinsic losses in sapphire. Such cavities allow a very low
density of spurious modes and can have valuable applications
in the microwave techniques.
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